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A B S T R A C T

Metabolomic biomarkers play a vital role in the early identification and prediction of cancer. It is possible to
save numerous lives if biomarkers are used to assist medical providers in diagnosing their patients faster. Many
researchers have been trying to identify the crucial biomarkers in the early diagnosis of diseases. This paper
presents several steps divided into two phases for determining the most important metabolomic biomarkers
in the blood for lung cancer prediction using Plasma and Serum samples. We used the Shapiro–Wilk Test,
Bartlett’s Test, Levene’s Test, Student’s t-Test, and Kruskal–Wallis Test in the first phase to determine the
potential biomarkers. Recursive Feature Elimination with Random Forest was used to identify the final most
dominant metabolomic biomarker at the second phase. Lastly, we ended with Ridge Classifier and XGBoost
Classifier to assess the consistency of our approaches. Despite the declining number of metabolites up to a
greater level, our prediction accuracy was 100% and 90.91% for Plasma and Serum samples, respectively
which is higher than the state-of-the-art method. Finally, we made some analysis using the most dominant
metabolites that can serve as a source of inspiration for our work.
1. Introduction

Lung cancer has been a threat in the field of medicine for a long
time. According to recent studies, an estimation of 235,760 new cases
will be diagnosed, and 131,880 people will die from lung cancer in
2021 in the US [1]. The same survey results reported 228,820 diagnoses
and 135,720 deaths in 2020 [2]. So without any doubt, the number
of patients is increasing at an alarming rate every year. Patients with
invasive lung and bronchus cancer were identified from the SEER 18-
registry database, covering 28% of the US population [3]. Lung cancer
patients can be recovered if they are diagnosed early. Life-loss years
vary from 6.16 for Stage I cancer to 16.21 for Stage IV [4].

Metabolomics aims to comprehensively analyze wide arrays of
metabolites in biological samples [5]. Metabolite measurements bear
fundamental regulatory importance to be used as diagnostic markers
for biological conditions, including diseases and response to chemical
treatment [6]. It is a beneficial field of study in the field of disease
detection. In this regard, biomarkers can play a crucial role in disease
detection and identification. One of the most common diseases faced
with the earth today is cancer. Suppose the metabolites are recognized,
either not present or present up to a tolerable amount in healthy cases.
In that case, it will have a huge impact on the identification of cancer.

In this paper, our objective is to show the impact of the measure
of some specific metabolomic biomarkers in lung cancer diagnosis.
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We worked with some lung cancer patients using those metabolomic
biomarkers present in Plasma and Serum samples of blood of those
patients. We analyzed 158 metabolites to find out the most significant
metabolomic biomarkers. We classified a person as a normal or a lung
cancer patient based on the specific metabolites. We also found the
hierarchical differences and relations between the metabolites using the
Agglomerative Hierarchical Clustering Technique [7]. Eventually, we
evaluated our approaches in terms of accuracy to identify lung cancer
patients.

We divided our proposed methodology mainly into two parts—
Feature Selection and Classification. At first, in feature selection, for
looking into the distribution of each feature in our dataset, we used
Shapiro–Wilk Test to check if the features were normally distributed [8,
9]. Then, we checked if our dataset maintained homogeneity (or equal-
ity) of variances. For that, we used Bartlett’s Test for the features with
normal distribution and Levene’s Test for the features without normal
distribution [9–11]. Finally, Student’s t-Test [12] for features with
Homoscedasticity (or equal variances) and Kruskal–Wallis Test [13]
for the features with Heteroscedasticity (or unequal variances) were
used and using the test statistics and 𝑝-Value, to obtain the most
dominant metabolites from a large number of list of those. We ob-
tained the most dominant metabolites in the case of Plasma and Serum
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samples. We deleted the rest. Then we used Recursive Feature Elimina-
tion [14] and obtained the best accuracy with some classifiers with a
very few metabolites of Plasma and Serum samples. For classification,
we went through some classifiers like Decision Tree Classifier, Ran-
dom Forest Classifier, Support Vector Machine (SVM), Ridge Classifier,
XGBoost Classifier, etc. We noted the results of the best classifiers
(Ridge Classifier and XGBoost Classifier for Plasma and Serum sample,
respectively).

At a glance, the overview of our paper is as follows: in the following
section, a literature review about the existing strategies on this problem
domain is presented. Then in the Methodology section, we described
the datasets, and our proposed architecture is explained elaborately.
The Results section provides the details of our experimental results and
comparison with the previous works. We conclude the paper with a
Conclusion. We also mention some practical applications of our work
in the Practical Implications section and the limitations of our work in
the Limitations and Future Research section.

2. Literature review

Previous works have taken up the task of identifying metabolomic
biomarkers from blood samples that can be used to identify cancer
patients. Kumar et al. [12] used Student’s t-Test and Kruskal–Wallis
Test to identify significant metabolites that attribute to lung cancer and
its identification in patients. They used the plasma, and serum samples
from the dataset [15] and ranked those metabolites according to the
importance score calculated using a Support Vector Machine (SVM)
classifier with a radial basis kernel function. Masrur et al. [16,17] used
Student’s t-Test, Kruskal–Wallis Test, and Mann–Whitney–Wilcoxon
Test to distinguish the differentially expressed metabolites obtained
from plasma and serum blood samples. The authors of this work used
cluster heatmap plots and fold change values to differentiate up and
down-regulated metabolites and used Recursive Feature Elimination
(RFE) to order and select the metabolites. Finally, a Support Vector
Machine (SVM) classifier was used with these metabolites to classify
control, and disease subjects in the dataset [15].

Zheng et al. [18] performed a study on serum samples of lung cancer
patients and healthy people implementing RF algorithm, SVM, and PLS-
DA algorithms. They identified 15 differential metabolites matching
the NIST database, of which five were found most significant ones in
differentiating the lung cancer patients. Xie et al. [19] worked with
plasma samples of 110 lung cancer patients and 43 healthy individuals
to detect lung cancer, especially of early stage. They used Random
Forest, SVM, etc., and found 46 most influential metabolic biomarkers
from 61, which are present in those plasma samples. They obtained
a classification accuracy of 100% with their machine learning impli-
cations on that dataset. Ruiying et al. [20] identified 35 metabolites
of serum samples which were different between Non-small cell lung
cancer (NSCLC) patients and healthy individuals, where 6 metabolites
were chosen as the most dominant. Zhang et al. [21] used the mRMR
method to rank input features, and the authors combined incremental
feature selection with Random Forest to select optimum features for
classification. Yuan et al. [22] used the Monte-Carlo Feature Selection
method, and then they used the Iterative Feature Selection method
with SVM to classify patients. The methods used in these works can be
improved by trying out different types of tests that we had done in our
work to be discussed in the future sections. Zhang et al. [23] worked
on the diagnosis of different stages of lung cancer analyzing plasma
metabolites by applying multivariate analysis and logistic regression
model.

Moreover, metabolomics study has been widely used in the di-
agnosis of other diseases too. Shu et al. [24] approached with ma-
chine learning-based models on plasma samples and identified powerful
biomarker combinations that can predict COVID-19 cases. Biomarkers
2

from plasma samples were analyzed, and the risk of heart failure was
Table 1
Subject distribution by control and disease in
the datasets.

Sample type Control Disease

Plasma 41 41
Serum 41 41

Table 2
Subject distribution by gender in the datasets.

Sample type Male Female

Plasma 20 62
Serum 20 62

assessed by Chirinos et al. [25]. They used a tree-based pipeline opti-
mizer (TPOT) platform to classify the patients and normal individuals.
Uchiyama et al. [26] analyzed the serum samples using the Advanced
Scan Package of Japan and identified 139 metabolites, of which 16 had
a better correlation with colorectal cancer (CRC). Nishiumi et al. [27]
analyzed plasma samples using GC-QqQ-MS and observed 8 metabolites
to significantly correlate to CRC. Long et al. [28] also made a research
on blood samples for global metabolomics profile analysis on CRC and
colorectal adenoma polyps using LC-MS/MS.

In the literature, the scope of improvement in the prediction per-
formance while selecting a lesser number of metabolomic biomarkers
using statistical and machine learning algorithms is the main motiva-
tion behind this research. We aim at early diagnosis of lung cancer
more accurately with less number of metabolites than that of Kumar
et al. [12], and Masrur et al. [16,17].

3. Methodology

3.1. Dataset description

The dataset we used in our study was produced under the study
ID: ST000392 by Oliver Fiehn [15]. It was produced by the time-of-
flight mass spectrometry GC-TOF-MS technique [29]. All the samples
collected were of two types, Plasma and Serum. Both samples contained
82 subjects, for which data of 158 metabolites were given in the
dataset. Among the subjects, the number of cancer patients and control
patients was 41 each, and 20 of the subjects were male, and the
remaining 60 subjects were female. Each of these are summarized in
Tables 1 and 2.

All of these blood samples were provided by two institutions, the
University of California at Davis Medical Center and the Fred Hutchi-
son Cancer Research Center. They provided the samples from their
bio-repositories. The samples were collected using (Ethylenediaminete-
traacetic acid) EDTA tubes and were stored at −80 degree Celsius [15].

The raw data of the GC-TOF-MS were processed using the Chro-
maTOF software (v. 2.32) and to find the peak and mass spectral
deconvolution. All the samples were collected with the consent of the
individuals in strict adherence to the IRB protocols approved by the
Institutional Review Board of each institution with the aim of the usage
of the samples restricted to research purposes only. The files containing
the result were exported and filtered using the UC Davis Metabolomics
BinBase database for consistency.

3.2. Proposed architecture

There is a flow diagram given as Fig. 1. This diagram is a summary
of our different approaches with Plasma and Serum samples to make
it easier to think and go through with them, which we will go deeper
with the details of the approaches in the next sessions.
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Fig. 1. Flow diagram of our proposed methodology.

3.3. Feature selection

We performed the Feature Selection Process in two different phases.
At first, several tests were compiled to obtain the potential metabolomic
biomarkers. Since there are things like normal distribution, equal or
unequal variances in the dataset features, so we had to perform those
tests. In the second phase, we performed Recursive Feature Elimination
to filter out and reduce the number of most dominant metabolites.

3.3.1. Shapiro–Wilk Test
From the Monte Carlo simulation, it has been observed that Shapiro–

Wilk Test is the best for the normal distribution test for a given signif-
icance. The next candidates in this testing field are Anderson–Darling,
Kolmogorov–Smirnov, Lilliefors, and Anderson–Darling Tests [30].

First, let us assume a null hypothesis, 𝑯𝟎 that all of the n samples of
every feature are normally distributed. We can reject this hypothesis if
we get a 𝒑-value less than or equal to 0.05. 𝒑-Value = 0.05 was taken
as a standard value for most of the test phases. But for the phase of
Student’s t-Test and Kruskal–Wallis Test, 𝒑-Value was set at 0.015 on
the trial and error basis in order to get an optimized number of most
dominant metabolomic biomarkers.

Now it is time to test the statistical significance. If 𝑿𝟏 < 𝑿𝟐 < ⋯ <
𝑿𝒏 is an ordered sample of size n to be tested for non-normality, �̄�
is the sample mean, 𝑿(𝒊) is the 𝒊th order statistic and 𝒂𝒊 are constants
generated from the covariances, variances and means of the 𝒊th [i=1,
2, . . . , n] sample: Shapiro–Wilk Test Statistic,

𝑾𝒔𝒉𝒂𝒑𝒊𝒓𝒐 =
(∑𝒏

𝒊=𝟏 𝒂𝒊𝑿(𝒊))𝟐
∑𝒏 ̄ 𝟐

(1)
3

𝒊=𝟏(𝑿𝒊 −𝑿)
Thus, the test statistic and the corresponding 𝒑-value were calcu-
lated with the features of our dataset. Now, two cases happened based
on that 𝒑-value:

if 𝒑-Value > 0.05, then the feature is normally distributed.
if 𝒑-Value <= 0.05, then the feature is not normally distributed.

We, later on, used Bartlett’s test and Levene’s test to check if their
variance was equal. Bartlett’s test is better for the features with normal
distribution, and Levene’s test is better for the rest [31]. That is why
we had to check the distribution of the features with the Shapiro–Wilk
Test first for obtaining the best output.

3.3.2. Bartlett’s Test
We used Bartlett’s Test on the features with normal distributions

only. Let us assume a null hypothesis, 𝑯𝟎 that all of the n samples have
equal variance. More mathematically, if the variance is 𝝈𝒊 for samples
𝒊 = 𝟏, 𝟐,… , 𝒏:

𝑯𝟎 ∶ 𝝈𝟐
𝟏 = 𝝈𝟐

𝟐 = ⋯ = 𝝈𝟐
𝒏 (2)

We can reject this hypothesis and stand with alternate hypothesis,
𝑯𝒂 if we get any pair of variances not equal. More mathematically, if
𝝈𝒊 and 𝝈𝒋 are a pair of variance of 𝒊th and 𝒋th [𝒊, 𝒋 = 𝟏, 𝟐,… , 𝒏] samples:

𝑯𝒂 ∶ 𝝈𝟐
𝒊 ≠ 𝝈𝟐

𝒋 (3)

Now it is time for test statistics. If there are 𝑵 samples, where 𝒏𝒊 is
the number of samples for the 𝒊th feature and 𝑺𝟐

𝒊 is the variance of a
sample 𝒏𝒊 features from the 𝒊th population [𝒊 = 𝟏, 𝟐,… , 𝒌], where 𝒌 is
the total number of features: Barlette Test Statistic,

𝑾𝒃𝒂𝒓𝒕𝒍𝒆𝒕𝒕 = 𝟐.𝟑𝟎𝟐𝟔
𝒒
𝒄

(4)

Here,

𝒒 = (𝑵 − 𝒌)𝒍𝒐𝒈(𝑺𝟐
𝒑) −

∑𝒌
𝒊=𝟏(𝒏𝒊 − 𝟏)𝒍𝒐𝒈(𝑺𝟐

𝒊 )
𝒄 = 𝟏 + 𝟏

𝟑(𝒌−𝟏) [
∑𝒌

𝒊=𝟏(
𝟏

𝑵𝒊−𝟏
) − 𝟏

𝑵−𝒌 ]

Pooled Variance, 𝑺𝟐
𝒑 =

(𝒌𝒊−𝟏)𝑺𝟐
𝒊

𝑵−𝒌

After the calculation of the test statistic as well as 𝒑-value from each
of the features, two cases happened based on that 𝒑-value:

𝒑-Value > 0.05 denotes Homoscedasticity of a feature.
𝒑-Value <= 0.05 denotes Heteroscedasticity of a feature.

3.3.3. Levene’s Test
The null hypothesis, 𝑯𝟎, and the alternate hypothesis, 𝑯𝒂 are the

same as mentioned in Bartlett’s Test section. So, we jump directly to
test statistics. We used Levene’s test on the features without normal
distributions only. Now, if a variable 𝑿 with a sample of size 𝑵
is divided into 𝒌 subgroups, where 𝑵𝒊 is the sample size of the 𝒊th
subgroup:

Levene Test Statistic,

𝑾𝒍𝒆𝒗𝒆𝒏𝒆 =
(𝑵 − 𝒌)∑𝒌

𝒊=𝟏(�̄�𝒊.− �̄�..)𝟐

(𝒌− 𝟏)∑𝒌
𝒊=𝟏

∑𝑵𝒊
𝒋=𝟏(𝒁𝒊𝒋 − �̄�𝒊.)𝟐

(5)

where, �̄�𝒊. are the group means of the 𝒁𝒊𝒋 and �̄�.. is the overall mean
of the 𝒁𝒊𝒋 . 𝒁𝒊𝒋 has definitions of:

𝒁𝒊𝒋 = |𝑿𝒊𝒋 −𝑿𝒊| (6)

Here, 𝑿𝒊𝒋 is the value of measured variable for 𝒋th case from the
𝒊th group. 𝑿𝒊 can be any one of 3 different definitions, which are �̄�𝒊,
𝑿𝒊 and �̄�𝒊

𝟏𝟎%. They are called mean, median, and 10% trimmed mean
respectively of the 𝒊th subgroup. Just like Bartlett’s Test, two cases
happened on the basis of the 𝒑-value:

𝒑-Value > 0.05 denotes Homoscedasticity of a feature.
𝒑-Value <= 0.05 denotes Heteroscedasticity of a feature.
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3.3.4. Student’s t-Test
In our work, we used Student’s t-Test [32] on each metabolite that

had a 𝒑-value > 0.05 and demonstrated equal variance after applying
Bartlette’s Test and Levene’s Test on the metabolites. The Student’s t-
Test is a parametric test method. In the Student’s t-Test, if a random
sample 𝑿𝟏𝟏, 𝑿𝟏𝟐, 𝑿𝟏𝟑,… , 𝑿𝟏𝒏𝟏 follows a normal distribution with mean
𝝁𝟏 and variance 𝝈𝟐

𝟏 and another random sample 𝑿𝟐𝟏, 𝑿𝟐𝟐, 𝑿𝟐𝟑,… , 𝑿𝟐𝒏𝟐
follows a normal distribution with mean 𝝁𝟐 and variance 𝝈𝟐

𝟐 , then the
null hypothesis, 𝑯𝟎 and the alternate hypothesis, 𝑯𝒂 are to be tested
is, 𝑯𝟎 : 𝝁𝟏 = 𝝁𝟐 vs 𝑯𝒂 : 𝝁𝟏 ≠ 𝝁𝟐. The test statistic (for 𝝈𝟐

𝟏 = 𝝈𝟐
𝟐) is:

𝒕 =
�̄�𝟏 − �̄�𝟐

√

𝒔𝟐( 𝟏
𝒏𝟏

+ 𝟏
𝒏𝟐
)

(7)

Here,

�̄�𝟏 =
∑𝒏𝟏

𝒊
𝑿𝟏𝒊
𝒏𝟏

; �̄�𝟐 =
∑𝒏𝟐

𝒊
𝑿𝟐𝒊
𝒏𝟐

𝒔𝟐𝟏 =
𝟏

𝒏𝟏−𝟏
∑(𝑿𝟏𝒊 − �̄�𝟏)𝟐; 𝒔𝟐𝟐 =

𝟏
𝒏𝟐−𝟏

∑(𝑿𝟐𝒊 − �̄�𝟐)𝟐;

𝒔𝟐 =
(𝒏𝟏−𝟏)𝒔𝟐𝟏+(𝒏𝟐−𝟏)𝒔

𝟐
𝟐

𝒏𝟏+𝒏𝟐−𝟐

Similarly, for 𝝈𝟐
𝟏 ≠ 𝝈𝟐

𝟐 , the test statistic is:

=
�̄�𝟏 − �̄�𝟐

√

(
𝒔𝟐𝟏
𝒏𝟏

+
𝒔𝟐𝟐
𝒏𝟐
)

(8)

Here, the arithmetic means of the sample 1 and sample 2 are �̄�𝟏 and
̄𝟐 respectively and 𝒔𝟐𝟏, 𝒔

𝟐
𝟐 are their respective variances. The test statis-

ics correspond to equal variance and unequal variance, respectively.
hen, the 𝒑-value is calculated with respect to the derived t value with
𝟏 + 𝒏𝟐 − 𝟐 degrees of freedom [12].

If 𝑿 is a metabolomics data matrix that contains both types of
amples (cancer and control), then for the 𝒊th metabolite 𝑿𝒊𝒋 , [𝒋 =
, 𝟐,… , 𝒏𝟏 is a sample for type-1 (e.g. cancer) with sample size 𝒏𝟏] and
𝒊𝒌, [𝒌 = 𝟏, 𝟐,… , 𝒏𝟐, is the sample for type-2 (e.g. control) with sample

ize 𝒏𝟐]; we assume 𝑯𝟎, ‘‘the 𝒊th metabolite is not differentially ex-
ressed between cancer vs control group’’. In this study, 𝑯𝟎 is rejected
f 𝒑-value < 0.015.

.3.5. Kruskal–Wallis Test
Kruskal and Wallis [13] proposed a non-parametric test that is used

n the data that do not satisfy the property of equal variance. We
sed this non-parametric test on the metabolites that did not satisfy the
ondition of 𝒑-value > 0.05 upon using Levene’s Test and Bartlett’s Test
n these metabolites. The test statistic for Kruskal–Wallis for 𝒌 groups
ach of size 𝒏𝒊 is defined by: Kruskal–Wallis Test Statistic,

𝑲𝒓𝒖𝒔𝒌𝒂𝒍 =
𝟏
𝒔𝟐

[[
𝒌
∑

𝒊=𝟏

𝑹𝒊

𝒏𝒊
−𝑵

(𝑵 + 𝟏)𝟐

𝟒
]] (9)

Here,

𝑵 : the total number of observations
𝑹𝒊: sum of the ranks for the 𝒊th sample
𝒔𝟐 = 𝟏

𝑵−𝟏 [
∑

𝒊,𝒋 𝑹𝟐
𝒊𝒋 −𝑵 (𝑵+𝟏)𝟐

𝟒 ]

3.3.6. Recursive feature elimination
After we had a set of filtered metabolites obtained from all the

gradual tests, we decided to reduce the number of those metabolites up
to some more extent. So we used Recursive Feature Elimination [14] to
obtain a small feature subset, removing several features at a time. This
technique follows the following steps:

Step 1. Train the classifier
Step 2. Compute the ranking criterion for all features
Step 3. Remove the feature with smallest ranking criterion
4

Here, we chose Random Forest Classifier (RF) [33] to train. For any
given tree in an RF, there is a subset of the learning set not used by
it during training because each tree was grown only on a bootstrap
sample. These subsets, called out-of-bag (OOB), can be used to give
unbiased measures of prediction error [34]. Each feature is shuffled,
and in the shuffled dataset, an OOB estimation of the prediction error
is calculated. Also, the irrelevant features do not change the prediction
error when altered in this way, opposite to the very relevant ones.

Again, we used cross-validation in this technique (RFECV) with a
step size of 5 to find out all probable best combinations of most domi-
nant metabolites of the Plasma sample, numbered from 1 to 𝒏𝑷 . We did
the same thing with the Serum sample for the metabolites numbered
from 1 to 𝒏𝑺 . [𝒏𝑷 and 𝒏𝑺 are the number of filtered biomarkers of
Plasma and Serum samples, respectively, obtained through all the tests
mentioned in Section 3.3].

3.4. Classification

We chose two different supervised machine learning algorithms to
differentiate normal persons and patients. Ridge Classifier [35,36] and
XGBoost Classifier [37] for the Plasma and Serum samples, respectively.

3.4.1. Ridge Classifier
We used Ridge Classifier in our Plasma samples. Ridge Classifier

uses the Ridge regression model to create a classifier. Our dataset
consists of binary classes. So the classifier was used in the following
ways:

The target variable is converted into +1 or −1 based on the class to
which it belongs. Then, the Ridge regression model is built to predict
our target variable. The loss function: 𝑳𝟎 = Mean Squared Error + l2
penalty.

Then, the Ridge regression’s prediction value was calculated based
on decision_function. If the value is greater than 0, it is predicted
as Disease class. Otherwise, it is predicted as the Control class. So,
using the Ridge classifier with cross-validation [38] of 10 splits in
our Plasma Sample, we got predictions from our sample. The accuracy
measurements are mentioned in Table 9.

3.4.2. XGBoost Classifier
We used XGBoost Classifier for our best approach, which is a

scalable tree boosting system invented by Tianqi Chen and Carlos
Guestrin [37]. It was started off as a research project as a part of the
Distributed Machine Learning Community (DMLC) group. This algo-
rithm falls in the category of boosting techniques among the ensemble
techniques and has been regarded as a great performer in various cases
where notion stems for the construction of additive models. Let, 𝒃𝒌(𝒙)
be a function that is addressed as a base learner. The additive model is
thus the sum of base learners:

𝒇 (𝒙) =
𝑴
∑

𝒌=𝟏
𝒃𝒌(𝒙) (10)

for 𝒌 = 𝟏, 𝟐,… ,𝑴 where 𝑴 is the number of base learners. The
minimization of the risk 𝑳 = (𝒇 (𝒙, 𝒚)) for the base learners of the
previous equation can be written as,

𝒃(𝒙) = 𝒂𝒓𝒈𝒎𝒊𝒏𝒃
∑

𝑫
𝑳(𝒇𝒌−𝟏(𝒙) + 𝒃(𝒙), 𝒚)

= 𝒂𝒓𝒈𝒎𝒊𝒏𝒃
∑

𝑫
[𝒃(𝒙)𝒈(𝒙, 𝒚) + 𝟏

𝟐
𝒃𝟐(𝒙)𝒉(𝒙, 𝒚)]

(11)

where 𝑫 = (𝒙, 𝒚) is a dataset and

𝒈(𝒙, 𝒚) =
𝝏𝑳(𝒇𝒌−𝟏(𝒙), 𝒚)

𝝏
;𝒉(𝒙, 𝒚) =

𝝏𝑳(𝒇𝒌−𝟏(𝒙), 𝒚)
𝝏𝒇 𝟐

(12)

The additive model of Eq. (10) is thus updated iteratively with the
boosting as

𝒇 (𝒙) = 𝒇 (𝒙) + 𝒃(𝒙) (13)
𝒌 𝒌−𝟏
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In our work, we used a tree-boosting XGBoost algorithm. The tree
model can be written as

𝒇 (𝒙) =
𝑻
∑

𝒋=𝟏
𝒘𝒋𝑰[𝒙𝝐𝑹𝒋] (14)

where 𝒘𝒋 is the constant fit in region 𝑹𝒋 and 𝑰 being the set of indices
of input 𝒙 assigned to the 𝒋th leaf for 𝒋 = 𝟏, 𝟐,… , 𝑻 , where 𝑻 is the
number of leaves of a tree. To grow a tree, it need to learn the constant
𝒘𝒋 and the regions 𝑹𝒋 from data. For the optimized leaf weight 𝒘∗,
Eq. (14) is submitted into the second equation of (11) to yield

𝒘∗ = 𝒂𝒓𝒈𝒎𝒊𝒏𝒘
∑

𝑫

𝑻
∑

𝒋=𝟏
[𝒈(𝒙, 𝒚)𝒘𝒋 +

𝟏
𝟐
𝒉(𝒙, 𝒚)𝒘𝟐

𝒋 ]

= 𝒂𝒓𝒈𝒎𝒊𝒏𝒘
𝑻
∑

𝒋=𝟏
[𝑮𝒘𝒋 +

𝟏
𝟐
𝑯𝒘𝟐

𝒋 ]

(15)

where,

𝑮 = ∑

𝑫 𝒈(𝒙, 𝒚)
𝑯 = ∑

𝑫 𝒉(𝒙, 𝒚)

For a fixed structure, the optimized leaf weights 𝒘∗ can be deter-
mined as 𝒘∗ = 𝑮

𝑯
Finding the optimized leaf weights of 𝒘∗ is equivalent to learning

he leaf weights. We have to find the split, which maximizes again,
hich is the loss reduction of a split. The gain for a fixed structure is
erived by the substitution into the previous equation by the equation
efore it.

∗ = − 𝒍
𝟐

𝑴
∑

𝒌=𝟏

𝑮𝟐

𝑯
(16)

The binary splits l(left and right) are determined by maximizing the
ain 𝑨 according to Eq. (16) given by

= 𝟏
𝟐
[
𝑮𝟐

𝑳

𝑯𝑳
+

𝑮𝟐
𝑹

𝑯𝑹
− 𝑮𝟐

𝑯
] (17)

here the subscripts 𝑳 and 𝑹 denote the left and right branches of a
ree, respectively.

Now, using this XGBoost classifier in the Serum sample, we got
redictions from our dataset this time. Cross-validation with 10 splits
as used to obtain a more accurate result. The accuracy measurements

or all of them in the Serum sample are also mentioned in Table 9.

. Results

.1. Biomarker selection

.1.1. Phase 1: Potential important biomarkers
We employed our methodology on the dataset prepared by Oliver

iehn [15], which is described in Section 3.1. From Shapiro–Wilk
est, as mentioned in Section 3.3.1 on our Plasma sample, only 19
eatures (20 features for Serum sample) had given a result of 𝒑-value

0.05, which declines the state of 100% normal distribution of our
ataset. Now we should check the homogeneity of variances. Due to
eteroscedasticity, the type I error rate could be affected in our dataset
rediction, resulting in false positives.

So, we proceeded with the Plasma sample for testing equality of
ariances of those 19 features with Bartlett’s Test as mentioned in Sec-
ion 3.3.2. Alternatively, we used Levene’s Test from Section 3.3.3 for
he rest of the features (139) as they were not normally distributed. In
he case of the serum sample, it was 20 features for Bartlett and 138
or Levene (see Table 3).

There were 19 features with a normal distribution, as we had
entioned earlier. All of them showed a result with a 𝒑-value under
.05. So, we obtained 19 features with the equality of variances and 0
f the opposite case.
5

i

Table 3
Characteristic count of the normally distributed features obtained from
Shapiro–Wilk Test.

Sample type # normally distributed # not normally distributed

Plasma 19 139
Serum 20 138

Table 4
Characteristic count of the homoscedastic and heteroscedastic
features obtained from Levene’s Test and Bartlett’s Test.

Sample type # homoscedastic # heteroscedastic

Plasma 138 20
Serum 141 17

Table 5
Potential plasma biomarkers and the 𝒑-Values ob-
tained from phase 1.

Metabolites p-Value

Asparagine 7.772173e−04
Benzoic acid 1.573528e−03
Tryptophan 8.134184e−03
Uric acid 4.475238e−03
Alpha-ketoglutarat 8.283066e−03
Citrulline 2.255381e−03
Glutamine 1.008927e−03
Hypoxanthine 1.008319e−02
Malic acid 1.492488e−03
Methionine sulfoxide 2.922638e−03
Nornicotine 1.416206e−02
Octadecanol 1.307513e−02
3-phosphoglycerate 4.305257e−06
5-methoxytryptamine 3.768184e−06
Adenosine-5-monophosphate 1.172319e−09
Aspartic acid 9.288817e−06
Lactic acid 2.299930e−05
Maltose 1.725126e−04
Maltotriose 9.523541e−03
N-methylalanine 1.212036e−02
Phenol 5.512039e−06
Phosphoethanolamine 1.511919e−03
Pyrophosphate 1.044920e−07
Pyruvic acid 2.825701e−04
Taurine 6.989644e−07

After Bartlett’s Test and Levene’s Test on our Plasma sample, we
got 138 features with Homoscedasticity (features named parametric).
So we used Student’s t-Test from Section 3.3.4 for finding out the test
statistics and 𝒑-value. The remaining 20 features were found with Het-
roscedasticity (features named non-parametric), and so they needed
ruskal–Wallis t-Test as mentioned in Section 3.3.5. This ratio was
lightly different for the serum sample as recorded in Table 4.

Going through all these steps, we obtained some important metabo-
ites based on the 𝒑-value of the features, using Student’s t-Test and
ruskal–Wallis Test. We marked a metabolite as a potential for which
𝒑-Value < 0.015 was found. There were 26 such metabolites in

he plasma sample. It was 16 in the case of the Serum sample. The
mportant metabolites along with their test results are given in Tables 5
nd 6.

.1.2. Phase 2: Final important biomarkers
Lastly, we performed Recursive Feature Elimination from

ection 3.3.6 and observed that only 19 metabolites from the Plasma
ample were enough to provide us the best accuracy. It was only 7
t the time of the Serum sample. The most dominant metabolites are
hown in Table 7.

Fig. 2 shows the line plot of all the accuracies obtained against the
ifferent number of metabolites using the Recursive Feature Elimina-
ion Cross-Validation (RFECV) with Random Forest Classifier. Here it

s noticeable that the result is the best for Plasma when the number
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Table 6
Potential serum biomarkers and the 𝒑-Values
obtained from phase 1.

Metabolites p-Value

Cholesterol 0.004834
Threonine 0.011263
Uric aci 0.011401
Inosine 0.014031
Lactic acid 0.001083
N-methylalanine 0.002099
Phenylalanine 0.008690
Aspartic acid 0.000002
Deoxypentitol 0.002537
Glutamic acid 0.005964
Malic acid 0.006954
Phenol 0.000283
Taurine 0.000533

Fig. 2. Accuracy plot of Plasma and Serum samples for different number of biomarkers
obtained from RFECV. (a) is of Plasma samples and (b) shows the same of Serum
samples. From the plots, we can see the difference of the accuracy varying according
to the number of biomarkers we chose. The best performances are annotated of 100%
for the Plasma samples with 19 biomarkers and 90.91% with 7 biomarkers for the
Serum samples.

of metabolites is 19 or 24. Similarly, the best result from the Serum
sample is obtained for 7, 8, and 11 metabolites only.

The final and most dominant metabolomic biomarkers responsible
for the prediction are mentioned earlier in Table 7. In our approach,
we decreased the number of biomarkers from the work of Kumar
et al. [12], and Masrur et al. [17]. A comparison of the approaches
to find the least number of important biomarkers is given in Table 8.

4.2. Validity of final important features

4.2.1. Clustermap
Fig. 3 denotes the cluster heatmap of our approach to show the

validity of the final important metabolites (19 from plasma and 7 from
serum samples) to predict Lung Cancer. The red and green regions of
6

Fig. 3. Clustermaps of final and most dominant biomarkers from Plasma and Serum
samples. (a) shows the most important metabolites of Plasma samples and (b) shows the
same of Serum samples. The deeper the color, the more dominant it is for the diagnosis
of lung cancer. The dendrites shows the cluster relationship among the metabolites. The
red spots indicates Disease label and greens are for Normal ones.

the heatmap indicates the Disease and Control Class respectively. On
the other hand, the tiles of the heatmaps show dominance in the case of
prediction. The branch-like objects are called dendrites, which formed
clusters to show closeness to one another. The two branches under the
same hierarchy form a cluster, which denotes the least difference of all
other metabolites.

4.2.2. Feature importance plot
Fig. 4 shows the cluster Feature Importance plot of our approach to

simplify the importance rate of the same metabolites (19 and 7 from
plasma and serum samples respectively), most useful to predict Lung
Cancer. The importance rate is plotted under a range of 0.0 to 1.0.
Random Forest classifier was used to rate out the metabolites.

4.2.3. Comparative analysis
Our different approaches for different samples give us the result of

accuracy to predict the patients with lung cancer as given in Table 9.
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Table 7
Selected most dominant biomarkers from Plasma and Serum datasets.

Sample type Metabolites

Plasma

Asparagine Benzoic acid Tryptophan Uric acid
5-hydroxynorvaline NIST Alpha-ketoglutarate Citrulline Glutamine
Hypoxanthine Malic acid Methionine sulfoxide Nornicotine
Octadecanol 3-phosphoglycerate 5-methoxytryptamine Adenosine-5-monophosphate
Aspartic acid Lactic acid Maltose

Serum Cholesterol Threonine Uric acid 3-hydroxybutanoic acid
5-hydroxynorvaline NIST Inosine Lactic acid
Table 8
Number of most dominant biomarker com-
parison with the existing methods.

Method # Plasma # Serum

Masrur et al. [17] 28 13
Kumar et al. [12] 27 13
Our approach 19 7

Fig. 4. Feature importance plots of metabolites. (a) shows the relative dominance of
the final and most important biomarkers for the early diagnosis of lung cancer using
Plasma samples and (b) shows the same using Serum samples.

The prediction accuracy of Masrur et al. [17] was 87.5% for the plasma
sample and 83.33% for the serum sample. However, we obtained a
better accuracy of 100% and 90.91% for the plasma and serum samples,
respectively. We tried Classifiers like Decision Tree, Random Forest,
SVM, Ridge, XGBoost, and so on for both the samples. At last, we kept
the Ridge Classifier for Plasma and XGBoost Classifier for Serum sample
for providing the best results than all other classifiers. The results are
given in Table 9.
7

Table 9
Prediction performance comparison with the state-of-the-art method.

Method Plasma Serum

Masrur et al. [17] 87.50 83.33

Our approach

Ridge classifier 100.0 75.40
XGBoost classifier 81.52 90.91
Decision tree classifier 78.64 83.69
Random forest classifier 83.29 83.27
Support vector machine 85.43 77.76
GaussianNB 80.95 78.68

5. Conclusions

Cancer continues to be one of the most common deadly diseases
in the world. Every year, large numbers of people lose their lives to
different subtypes of cancer. Previous research found that metabolomic
biomarkers identified from differentially expressed metabolites in lung
cancer patients can have a huge impact on the field of medicine as
early and cost-effective measures of identifying cancer patients are
crucial to save lives. In this work, we improved the existing method
for identifying metabolomic biomarkers with high accuracy. Using the
Ridge Classifier, we achieved 100% accuracy for the Plasma sample.
For the Serum sample, we obtained 90.91% accuracy using XGBoost
Classifier. However, We understand that no approach can be superior to
another in every aspect, but it can be better in some aspects. Therefore,
it is clear from the results that our approach is more superior compared
to the previous ones. Our methodology is efficient both in terms of the
predictive accuracy and the reduced number of metabolites for Serum
and Plasma samples. The number of most dominant metabolites was
only 19 and 7 in the case of Plasma and Serum samples, respectively.

6. Practical implications

The proposed methodology and the results from our study can be
impactful in the field of bioinformatics and healthcare to get warned
about a patient being affected with lung cancer. If we can be more and
more accurate in the early diagnosis of cancer, it will save many lives.
Machine learning implications to extract more and more insights, using
the information of plasma and serum samples can be a blessing if we
keep researching more. Not only cancer, but we can also predict other
diseases with the information we are hoping to do as our future work.

7. Limitations and future research

We intend to contribute more to the field of metabolomics and thus
plan to work with metabolomic biomarkers for lung cancer and other
subtypes of cancer such as kidney, throat, pancreatic cancer, and other
diseases. The methods we used in this paper can be applied to other
cancer subtypes for future research. It is to be noted that the dataset
used in this work is not as big as the datasets used in some other
works. Thus, this work is to be extended to larger datasets. Further,
research centering around the discussed matters in this section can
greatly improve and contribute to the field of metabolomics, disease
prediction, and so on. Moreover, we hope to extract people’s data
from other geographic regions to make the prediction more and more
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generalized. Other information like age, past medical reports, bad
habits, and routines can impact the diagnosis, and we would like to
work on those too. However, we believe our approach can be a base
procedure for accurately identifying metabolomic biomarkers needed
to identify cancer patients accurately and for future research in the
fields.
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